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Outline

■ Trends in CMOS ADCs

■ Massively Interleaved ADCs

● 4 GSa/s

● 20 GSa/s
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ADC Dynamic Range vs. Input BW - ISSC
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Practical limitations:
   Input buffering
   Clock gen + dist’n
   Jitter
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13 June 2005Agilent Technologies

ADC Figure of Merit vs. Input BW - ISSC
FOM = P / ( 2ENOB * 2 * FIN)
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Some Trends in CMOS AD
■ Increasing focus on power reduction

● Battery-powered  (e.g., toys, laptops) - supply

● High-end ADCs (e.g., scopes) - dissipation lim

● System-on-a-Chip (e.g., wireless, PDAs) - ca

■ Increasing numbers of embedded ADCs and DA

■ Lower-voltage CMOS tends to take more power 
SNR

➪ Increased advantage in replacing analog func

■ Lower-voltage CMOS makes precision analog ci

➪ Increasing use of simpler analog circuits

➪ Increasing use of digital techniques to addres

■ Calibration Techniques

● Foreground calibration used in some ADCs

● Background calibration starting to move beyo
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Process Selection
Poulton’s Polemic:

"Don’t use III-V FETs if HBTs will work.

 Don’t use III-V HBTs if silicon will work.

 Don’t use bipolar if CMOS will work."

Robertson’s Reason:

"If we don’t do it in CMOS, someone else 

■ CMOS is cheaper (at least in volume)

■ CMOS circuits are more widely reusable

■ CMOS designers are less difficult to hire

■ But some jobs do need other technologies
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What’s in a Scope?

■ Resolution - 8 bits

■ Realtime BW up to FS/2.5

■ Money specs: bandwidth and sample rate

Analog
Input

Amplifier   Fast

RAM

C
Memory P

S

Amp
Voltage ADC

The ADC Designer’s View:

The Scope User’s View:
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Designing Scope ADCs the Old
◆ Approach:

■ Use the fastest technology available

■ Design for the highest sample rate

■ If necessary, time-interleave 2-6x

◆ State of the Art in 1996:
■ 25-GHz bipolar process

■ 2-GSa/s unit ADC

■ Interleaved 2x to get 4 GSa/s on one chip

■ 2.2 GHz BW (with 4x interleave)

■ 6.5 effective bits at 100 MHz

■ 5.4 effective bits at 1 GHz

■ 13 watts

■ Expensive

Custom th

custom CM
custom bip
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Could We Use CMOS for Scope 

“Don’t be stupid:”
◆ CMOS ADCs are 60 times too slow (in 19

◆ CMOS transistors are 10 times less accu

“But...”
◆ CMOS chips are cheap and transistors ar

◆ Could integrate with memory

◆ Might be lower power

◆ One high-BW circuit: the NMOS track-and
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Idea: Massive Interleaving of Low-Po

■ Start with the most power-efficient CMOS ADC s

■ Time-interleave like crazy to get sample rate

■ Fix up analog accuracy through calibration

Challenges:
Track/Hold : Bandwidth, Channel mismatc

ADC: Sample Rate, Power/sample, Circ
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CMOS ADC Chip Architecture 

■ 32 time-interleaved pipeline ADCs at 1

■ Net sample rate is 4 GSa/s

32 T/H+V/I

32 ADCs
DLL

Input
Clock

Vin

Clock

Gen

  32 RC

R
adix C

onverters
+
-
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Timing Error and ADC Resolu

■ Fast signal converts a sample timing error (dT) to
error (dV).

■ Rule of thumb: 1 ps / 1 GHz --> 7 effective bits
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16 ps rmsOtherwise Ideal ADC
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Timing Error Signature

■ Larger voltage errors during high dV/dt.
Fs = 20 GSa/s  Fin = 5007.5 MHz  5.0 effective bits

-10

-5

0

5

10

E
rr

or
 (L

S
B

s)

0 20 40 60 80 100 120 140 160
Equivalent Time (ps)

0

50

100

150

200

250

A
D

C
 C

od
e



14

y: 2 ns

er cal

32
Sampling
Clocks
(125 MHz)
13 June 2005Agilent Technologies

Timing Generator

● Max input edge to sampling edge dela

~ 1 ps jitter         < 1 ps static error aft

DLL

/4
/4

/4
/4

/4
/4

/4
/4

500 MHz Clock

PD
...

Ring
Cntrs

Delay
Adjusters



15

ld

arity:

rasitics

peak)

 dB HD3
 dB HD3

old
13 June 2005Agilent Technologies

Simplified Input Track/Ho

■ To achieve highest bandwidth and line
● ONLY 1 NMOS FET in signal path

● Restrict Chold to only T/H and load pa

● Low common mode input voltage

● Low-swing differential signal (250 mV 

● Fastest possible full-swing clock edge

In 0.35 um: 2 GHz bandwidth, -50
In 0.18 um: 7 GHz bandwidth, -50

Clock

Cds

VholdVin

Ch
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Analog Front End Implemen

■ Parasitic-only hold capacitance (140 fF

■ Only 1 ns (12.5%) pulse width for Clks

■ Reset phase

■ Transconductor (V/I) current output dri

W/2

Clk rst

Clkcc

Vin
+

-

Clks

V/I

Vhold +

Vhold -

W W/2
Sample Charge Reset

Comp.
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Pipeline ADC Block Diagr

● Only 1 comparator per stage

1-bit
quantizer

T/H

De-skew latches

DACFF+
_

G

…

+
-

Clock

Input

Radix Conversion Circuit

Clock

Input

1-bit
quantizer

21

Corrected Output (8 bits, 

Raw ADC output: 12 bits, Ra



18

ain

scodes are 8 bit

Iout

*W
13 June 2005Agilent Technologies

Current-Mode T/H and G

■ Good Linearity: Current mirrors with ca
linear.

■ Poor Accuracy: Gain and offset errors

Gain=M

Iin

W M
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Radix Converter Princip

■ ADC is performing linear operations.

■ Output bits are can be linearly combin
input signal:

ADC output = b 11.w11 + b10.w10 +  ...  + b1.

■ Traditional design: Accurate analog de
● wi are powers of 2

● No explicit Multiply/Accumulate neede

■ Digital Calibration:  Approximate analo
● Actual wi are measured through calibr

● Compliments reduced radix approach

● Requires Multiply/Accumulate block.
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Multiply/Accumulate  (Radix Co

■ 1 bit “Multiply” is just a memory access

■ Look-up table is an alternative.

weight 11Bit 11

Bit 10

Bit 9

Bit 1

Bit 0

weight 10

weight 9

weight 1

weight 0

…

…

Calculate and download bit weights dur

Output = b 11.w11 + b10.w10 +  ...  + b1.

Σ…
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What Needs To Be Calibra

● Offline Calibration with DC and Pulse 

R
adix C

onverters

32 T/H+V/I

32 ADCs
DLL

Clock

Clock

Gen

  32 RC

RC Bit Weights

Per-slice
Gain + Offset
DACs

Timing
Adjust
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Advantages of a Calibration Ap

■ We can get away with approximate an
● No 6-sigma 1% matching needed in A

● Do not need precise modelling of 2nd
effects (like layout related delta W).

● Time delay mismatch can be tolerated

● Signal path offset and gain errors are 

● If an effect can be calibrated, and a re
its effect computed, then design of the
relatively simple.

■ Benefits:
● Reduced design time.

● High yield possible with many ADCs /
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4 GSa/sec ADC Chip Lay

7.1 mm x 4.0 mm      300,000 FETs      4.6 
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Acquisition Before Calibra

~ 5 effective bits
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Acquisition After Calibrati
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ADC Effective Bits vs Input Fre

1.2 ps rms clock error
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0.18 µm CMOS:  20 GSa/s,

■ 2x faster process, 5x higher sample rate, 6x high

■ 80 ADC slices, larger Cin --> SiGe input buffer ch

■ 160 Gb/s data rate --> 1 MB on-board sample m

1 GHz
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Buffer:
40 GHz SiGe

1 x 2 mm
1000 transistors

1 W

ADC:
0.18-um CMOS

14 x 14 mm
50M transistors

9 W

Package:
438-ball BGA
35 x 35 mm
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20 GSa/sec ADC Module

➪ System Challenges:  Low Voltage + Supply D
                                         Digital Complexity

Memory

Pipelines
Radix Converters

Memory Controllers
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ADC Effective Bits vs Input Fre

6.5 effbits at low frequency.  0.7 ps rms 

10M 20M 50M 100M 200M 500M 1G 2G 5G 1

Input Frequency (Hz)

0

1

2

3

4

5

6

7

8
E

ff
ec

ti
ve

 B
it

s

Noise-limited Jitter-limited

Input amplitude 95% of full scale.
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m BGA
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ADC Chips - Key Spec
4 GSa/s 20 GS

Nominal Sample Rate 4 20
Resolution 8 8

3 dB Bandwidth 1.6 6.6
Accuracy @ 30 MHz

Fs/4
7.0
6.2

6.5
5.0

Timing Error (jitter) 1.2 0.7
Noise 0.6 0.9

INL / DNL ±0.3 / ±0.2 ±0.4 / ±
Power 4.6 10

IC Technology 0.35 µm 0.18µm / 3

Chip Size 7.14 x 4.04 14x14 /
Transistors 300k 50M / 
Package 27 mm 35 m
Memory 0 1 M
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Monolithic ADCs in 200
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Energy per Sample

■ Twice the sample rate at 1/3 the power of the nea
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Conclusions
■ Trends

● Increasing importance of power efficiency an

● CMOS is taking over ever more of the ADC m

■ Interleaved ADCs

● Massive time-interleaving allows CMOS to co
sample rates

● Very high BW possible with NMOS T/H

● Calibration is a key to utilizing low-power, inac

● The world’s fastest 8-bit ADC is now CMOS
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