[Workshop WMA]

Building the World's Fastest 8-bit ADC - In CMOS

Ken Poulton

Agilent Laboratories 3500 Deer Creek Road Palo Alto, CA 94306

13 June 2005

Outline

- Trends in CMOS ADCs
- Massively Interleaved ADCs
 - 4 GSa/s
 - 20 GSa/s

ADC Dynamic Range vs. Input BW - ISSCC 1998-2005

ADC Figure of Merit vs. Input BW - ISSCC 1998-2005 FOM = P / ($2^{ENOB} * 2 * F_{IN}$)

Some Trends in CMOS ADCs

- Increasing focus on power reduction
 - Battery-powered (e.g., toys, laptops) supply limited
 - High-end ADCs (e.g., scopes) dissipation limited
 - System-on-a-Chip (e.g., wireless, PDAs) can have both limits
- Increasing numbers of embedded ADCs and DACs
- Lower-voltage CMOS tends to take *more* power to maintain the same SNR

Increased advantage in replacing analog functions with digital

- Lower-voltage CMOS makes precision analog circuits harder
 - Increasing use of simpler analog circuits
 - Increasing use of digital techniques to address analog imperfections
- Calibration Techniques
 - Foreground calibration used in some ADCs
 - Background calibration starting to move beyond academic ADCs

Process Selection

Poulton's Polemic:

"Don't use III-V FETs if HBTs will work. Don't use III-V HBTs if silicon will work. Don't use bipolar if CMOS will work."

Robertson's Reason:

"If we don't do it in CMOS, someone else will."

- CMOS is cheaper (at least in volume)
- CMOS circuits are more widely reusable
- CMOS designers are less difficult to hire
- But some jobs do need other technologies

What's in a Scope?

- Resolution 8 bits
- Realtime BW up to F_S/2.5
- Money specs: bandwidth and sample rate

Designing Scope ADCs the Old Way

- Approach:
 - Use the fastest technology available
 - Design for the highest sample rate
 - If necessary, time-interleave 2-6x
- State of the Art in 1996:
 - 25-GHz bipolar process
 - 2-GSa/s unit ADC
 - Interleaved 2x to get 4 GSa/s on one chip
 - 2.2 GHz BW (with 4x interleave)
 - 6.5 effective bits at 100 MHz
 - 5.4 effective bits at 1 GHz
 - 13 watts
 - Expensive

Custom thick-film package with custom bipolar ADC chip and custom CMOS memory chip

Could We Use CMOS for Scope ADCs?

"Don't be stupid:"

- CMOS ADCs are 60 times too slow (in 1996)
- CMOS transistors are 10 times less accurate than bipolars

"But..."

- CMOS chips are cheap and transistors are virtually free
- Could integrate with memory
- Might be lower power
- One high-BW circuit: the NMOS track-and-hold (T/H)

Idea: Massive Interleaving of Low-Power ADCs

- Start with the most power-efficient CMOS ADC slice
- Time-interleave like crazy to get sample rate
- Fix up analog accuracy through calibration

Challenges:

Track/Hold : Bandwidth, Channel mismatch, Clocks ADC: Sample Rate, Power/sample, Circuit area

CMOS ADC Chip Architecture (4 GSa/s)

- 32 time-interleaved pipeline ADCs at 125 MSa/s
- Net sample rate is 4 GSa/s

Timing Error and ADC Resolution

 Fast signal converts a sample timing error (dT) to an apparent voltage error (dV).

Rule of thumb: 1 ps / 1 GHz --> 7 effective bits

13 June 2005

Timing Error Signature

Larger voltage errors during high dV/dt. Fs = 20 GSa/s Fin = 5007.5 MHz 5.0 effective bits

- Max input edge to sampling edge delay: 2 ns
 - ~ 1 ps jitter < 1 ps static error after cal

Simplified Input Track/Hold

To achieve highest bandwidth and linearity:

- ONLY 1 NMOS FET in signal path
- Restrict C_{hold} to only T/H and load parasitics
- Low common mode input voltage
- Low-swing differential signal (250 mV peak)
- Fastest possible full-swing clock edge

In 0.35 um: 2 GHz bandwidth, -50 dB HD3 In 0.18 um: 7 GHz bandwidth, -50 dB HD3

Analog Front End Implementation

- Parasitic-only hold capacitance (140 fF)
- Only 1 ns (12.5%) pulse width for Clk_s
- Reset phase
- Transconductor (V/I) current output drives ADC

Only 1 comparator per stage

. Agilent Technologies

Current-Mode T/H and Gain

- Good Linearity: Current mirrors with cascodes are 8 bit linear.
- Poor Accuracy: Gain and offset errors

Radix Converter Principle

- ADC is performing linear operations.
- Output bits are can be linearly combined to represent input signal:

ADC output = $b_{11}.w_{11} + b_{10}.w_{10} + \dots + b_1.w_1 + b_0.w_0$

- Traditional design: Accurate analog design
 - w_i are powers of 2
 - No explicit Multiply/Accumulate needed.
- Digital Calibration: Approximate analog design.
 - Actual w_i are measured through calibration
 - Compliments reduced radix approach.
 - Requires Multiply/Accumulate block.

Multiply/Accumulate (Radix Converter)

Calculate and download bit weights during cal.

- 1 bit "Multiply" is just a memory access
- Look-up table is an alternative.

What Needs To Be Calibrated?

Offline Calibration with DC and Pulse sources

Advantages of a Calibration Approach

- We can get away with approximate analog design.
 - No 6-sigma 1% matching needed in ADC slice.
 - Do not need precise modelling of 2nd order mismatch effects (like layout related delta W).
 - Time delay mismatch can be tolerated.
 - Signal path offset and gain errors are easily cal'ed.
 - If an effect can be calibrated, and a reasonable bound on its effect computed, then design of the calibration DAC is relatively simple.
- Benefits:
 - Reduced design time.
 - High yield possible with many ADCs / chip.

4 GSa/sec ADC Chip Layout

7.1 mm x 4.0 mm 300,000 FETs 4.6 W 0.35 μ m

Acquisition Before Calibration

ADC Effective Bits vs Input Frequency

0.18 μm CMOS: 20 GSa/s, 6 GHz

- 2x faster process, 5x higher sample rate, 6x higher BW
- 80 ADC slices, larger C_{in} --> SiGe input buffer chip
- 160 Gb/s data rate --> 1 MB on-board sample memory

20 GSa/sec ADC Module

40 GHz SiGe 1 x 2 mm 1000 transistors

0.18-um CMOS 14 x 14 mm 50M transistors

Package: 438-ball BGA 35 x 35 mm

System Challenges: Low Voltage + Supply Droop **Digital Complexity**

ADC Effective Bits vs Input Frequency

6.5 effbits at low frequency. 0.7 ps rms jitter

ADC Chips - Key Specs

	4 GSa/s	20 GSa/s	Units
Nominal Sample Rate	4	20	GSa/s
Resolution	8	8	bits
3 dB Bandwidth	1.6	6.6	GHz
Accuracy @ 30 MHz	7.0	6.5	effective bits
Fs/4	6.2	5.0	(ENOB)
Timing Error (jitter)	1.2	0.7	ps rms
Noise	0.6	0.9	LSB rms
INL / DNL	±0.3 / ±0.2	±0.4 / ±0.3	LSB
Power	4.6	10	Watts
IC Technology	0.35 µm	0.18µm / 35GHz	CMOS / SiGe
Chip Size	7.14 x 4.04	14x14 / 1x2	mm ²
Transistors	300k	50M / 1k	
Package	27 mm	35 mm	BGA
Memory	0	1 M	samples

Monolithic ADCs in 2004

ENOB at Fs/4

Energy per Sample

■ Twice the sample rate at 1/3 the power of the nearest competitor

Conclusions

- Trends
 - Increasing importance of power efficiency and low cost
 - CMOS is taking over ever more of the ADC market
- Interleaved ADCs
 - Massive time-interleaving allows CMOS to compete at the highest sample rates
 - Very high BW possible with NMOS T/H
 - Calibration is a key to utilizing low-power, inaccurate circuits
 - The world's fastest 8-bit ADC is now CMOS

Acknowledgements

Robert Neff Brian Setterberg Bernd Wuppermann Tom Kopley Bob Jewett

Mehrdad Heshami Andy Burstein Charles Tan Jorge Pernillo

Updated versions of these slides may be found at http://www.labs.agilent.com/Ken_Poulton/papers.html

